A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection
نویسندگان
چکیده
This paper presents and evaluates a deep learning architecture for automated basal cell carcinoma cancer detection that integrates (1) image representation learning, (2) image classification and (3) result interpretability. A novel characteristic of this approach is that it extends the deep learning architecture to also include an interpretable layer that highlights the visual patterns that contribute to discriminate between cancerous and normal tissues patterns, working akin to a digital staining which spotlights image regions important for diagnostic decisions. Experimental evaluation was performed on set of 1,417 images from 308 regions of interest of skin histopathology slides, where the presence of absence of basal cell carcinoma needs to be determined. Different image representation strategies, including bag of features (BOF), canonical (discrete cosine transform (DCT) and Haar-based wavelet transform (Haar)) and proposed learned-from-data representations, were evaluated for comparison. Experimental results show that the representation learned from a large histology image data set has the best overall performance (89.4% in F-measure and 91.4% in balanced accuracy), which represents an improvement of around 7% over canonical representations and 3% over the best equivalent BOF representation.
منابع مشابه
Non-melanoma skin cancer diagnosis with a convolutional neural network
Background: The most common types of non-melanoma skin cancer are basal cell carcinoma (BCC), and squamous cell carcinoma (SCC). AKIEC -Actinic keratoses (Solar keratoses) and intraepithelial carcinoma (Bowen’s disease)- are common non-invasive precursors of SCC, which may progress to invasive SCC, if left untreated. Due to the importance of early detection in cancer treatment, this study aimed...
متن کاملDeep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning
Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...
متن کاملProteomic Analysis of Gene Expression in Basal Cell Carcinoma
Background: Basal Cell Carcinoma (BCC) is a type of non-melanoma skin cancer. Alteration in gene expression is the important event that happens in cancer cell. Detection of this event is possible by proteomics techniques. Methods: Normal and tumor tissues were taken from BCC patient. Total proteins were purified by standard methods, and proteins were separated by two-dimensional electrophoresis...
متن کاملI-1: Screening of Subfertile Men for Testicularlar Carcinoma In Situ by An Automated Image Analysis-Based Cytological Test of The Ejaculate
Background: Testicular cancer (TC) is usually diagnosed after manifestation of an overt tumour. Tumour formation is preceded by a pre-invasive and asymptomatic stage, carcinoma in situ (CIS) testis, except for very rare subtypes. The CIS cells are located within seminiferous tubules but can be exfoliated and detected in ejaculates with specific CIS markers. Materials and Methods: We have built ...
متن کاملA Pre-Trained Ensemble Model for Breast Cancer Grade Detection Based on Small Datasets
Background and Purpose: Nowadays, breast cancer is reported as one of the most common cancers amongst women. Early detection of the cancer type is essential to aid in informing subsequent treatments. The newest proposed breast cancer detectors are based on deep learning. Most of these works focus on large-datasets and are not developed for small datasets. Although the large datasets might lead ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 16 Pt 2 شماره
صفحات -
تاریخ انتشار 2013